
TMTM

Using Cray Performance Analysis Tools

S–2376–50

© 2006, 2007, 2009 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights.
Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR
252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, and UNICOS are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop,
Cray C++ Compiling System, Cray CX1, Cray Fortran Compiler, Cray Linux Environment, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+,
Cray SHMEM, Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5,
Cray XT5h, Cray XT5m, CrayDoc, CrayPort, CRInform, ECOphlex, Libsci, NodeKARE, RapidArray, UNICOS/lc, UNICOS/mk, and
UNICOS/mp are trademarks of Cray Inc.

AMD, AMD Opteron, and Opteron are trademarks of Advanced Micro Devices, Inc. GNU is a trademark of The Free Software Foundation.
Linux is a trademark of Linus Torvalds. Lustre is a trademark of Cluster File Systems, Inc. PBS Pro is a trademark of Altair Grid Technologies.
PGI is a trademark of The Portland Group Compiler Technology. SUSE is a trademark of SUSE LINUX Products GmbH, a Novell business.
TotalView is a trademark of Etnus, LLC. UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open Group in the United
States and other countries. All other trademarks are the property of their respective owners.

Version 3.1 Published October 2006 First release. Supports CrayPat 3.1 and Cray Apprentice2 3.1 running on Cray XT systems.

Version 4.1 Published December 2007 Supports CrayPat 4.1 and Cray Apprentice2 4.1 running on Cray XT3, Cray XT4, and Cray XT5 systems,
including Cray XT5h systems with Cray X2 compute blades.

Version 5.0 Published September 2009 Supports CrayPat and Cray Apprentice2 5.0 release running on Cray XT systems, excluding Cray XT5h
(Cray X2) systems.

New Features

Using Cray Performance Analysis Tools S–2376–50

This guide is a complete rewrite of Using Cray Performance Analysis Tools. It supports the 5.0 release of
CrayPat and Cray Apprentice2. Major changes from earlier versions include:

• Initial documentation of Automatic Program Analysis. See Using Automatic Program Analysis on
page 21.

• Expanded documentation of pat_build environment variables and build directives. See Advanced
Users: Environment Variables and Build Directives on page 22.

• Expanded documentation of the CrayPat OpenMP API. See Advanced Users: OpenMP on page 29.

• Expanded documentation of CrayPat run time environment variables. See Chapter 3, Using the CrayPat
Run Time Environment on page 31.

• Expanded documentation of the pat_help online help system, including the new Frequently Asked
Questions (FAQ) feature. See Online Help on page 13.

• Initial documentation of the new Cray Apprentice2 online help system. See Online Help on page 15.

• Initial documentation of CrayPat and Cray Apprentice2 data file compatibility issues. See Upgrading from
Earlier Versions on page 14.

• The deprecated commands pat_hwpc and pat_run are removed in this release.

• Support for Cray XT systems running the Catamount compute node operating system and Cray XT5h
systems equipped with Cray X2 compute nodes is removed in this release.

Contents

Page

Introduction [1] 9

1.1 Analyzing Program Performance with CrayPat 10

1.1.1 Loading CrayPat and Compiling 10

1.1.2 Instrumenting the Program . 11

1.1.2.1 Automatic Program Analysis 11

1.1.3 Running the Program and Collecting Data 11

1.1.4 Analyzing the Results . 12

1.1.5 Online Help . 13

1.1.5.1 Reference Files . 13

1.1.5.2 PAPI . 14

1.1.6 Upgrading from Earlier Versions 14

1.2 Analyzing Data with Cray Apprentice2 14

1.2.1 Loading and Launching Cray Apprentice2 15

1.2.2 Online Help . 15

1.2.3 Upgrading from Earlier Versions 16

Using pat_build [2] 17

2.1 Basic Profiling . 17

2.2 Using Predefined Trace Groups . 18

2.3 User-defined Tracing . 19

2.3.1 Enabling Tracing and the CrayPat API 19

2.3.2 Instrumenting a Single Function 19

2.3.3 Preventing Instrumentation of a Function 19

2.3.4 Instrumenting a User-defined List of Functions 20

2.3.5 Creating New Trace Intercept Routines for User Files 20

2.3.6 Creating New Trace Intercept Routines for Everything 20

2.4 Using Automatic Program Analysis 21

2.5 Advanced Users: Environment Variables and Build Directives 22

2.6 Advanced Users: The CrayPat API 25

2.6.1 Header Files . 26

S–2376–50 5

Using Cray Performance Analysis Tools

Page

2.6.2 API Calls . 27

2.7 Advanced Users: OpenMP . 29

Using the CrayPat Run Time Environment [3] 31

3.1 Summary . 31

3.2 Common Uses . 35

3.2.1 Controlling Run Time Summarization 35

3.2.2 Controlling Data File Size . 36

3.2.3 Selecting a Predefined Experiment 37

3.2.3.1 Trace-enhanced Sampling 38

3.2.4 Measuring MPI Load Imbalance 39

3.2.5 Monitoring Hardware Counters 39

Using pat_report [4] 41

4.1 Using Data Files . 41

4.2 Producing Reports . 42

4.2.1 Using Predefined Reports . 42

4.2.2 User-defined Reports . 45

4.3 Exporting Data . 46

4.4 Automatic Program Analysis . 46

Using Cray Apprentice2 [5] 47

5.1 Launching the Program . 47

5.2 Opening Data Files . 48

5.3 Basic Navigation . 49

5.4 Viewing Reports . 51

5.4.1 Overview Report . 51

5.4.2 Environment Reports . 52

5.4.3 Traffic Report . 53

5.4.4 Mosaic Report . 53

5.4.5 Activity Report . 54

5.4.6 Function Report . 54

5.4.7 Call Graph . 54

5.4.8 I/O Reports . 55

5.4.8.1 I/O Overview Report . 55

5.4.8.2 I/O Rates . 56

5.4.9 Hardware Reports . 56

5.4.9.1 Hardware Counters Overview Report 56

5.4.9.2 Hardware Counters Plot 56

6 S–2376–50

Contents

Page

Glossary 57

Procedures
Procedure 1. Using CrayPat API Calls 26

Tables
Table 1. Run Time Environment Variables Summary 31

Table 2. Cray Apprentice2 Navigation Functions 49

Table 3. Common Panel Actions . 50

Figures
Figure 1. File Selection . 48

Figure 2. Screen Navigation . 49

S–2376–50 7

Introduction [1]

The Cray Performance Analysis Tools are a suite of optional utilities that enable
you to capture and analyze performance data generated during the execution of your
program on a Cray XT system. The information collected and analysis produced by
use of these tools can help you to find answers to two fundamental programming
questions: How fast is my program running? and How can I make it run faster?

The Cray Performance Analysis Tools suite consists of two separately licensed
components:

• CrayPat: the program instrumentation, data capture, and basic text reporting tool

• Cray Apprentice2: the graphical analysis and data visualization tool

This guide is intended for programmers and application developers who write,
port, or optimize software applications for use on Cray XT systems running the
Cray Linux Environment (CLE) operating system. We assume you are already
familiar with the Cray XT development and execution environments and the
general principles of program optimization, and that your application is already
fully debugged and capable of running to planned termination. If you need more
information about the Cray XT development and execution environments or about
debugging applications, see the Cray XT Programming Environment User's Guide.

A discussion of massively parallel programming optimization techniques is beyond
the scope of this guide.

Note: The Cray Performance Analysis Tools 5.0 release does not support Cray XT
systems running the Catamount compute node operating system, nor does it
support Cray XT5h systems equipped with Cray X2 compute nodes.

Cray XT systems feature a variety of processors and support a variety of compilers.
Because of this, your results may vary from the examples discussed in this guide.
Most of the examples in this guide were developed using the Cray Compiling
Environment (CCE) 7.1 compilers on a Cray XT4 system with quad-core processors.

S–2376–50 9

Using Cray Performance Analysis Tools

1.1 Analyzing Program Performance with CrayPat
The performance analysis process consists of three basic steps.

1. Instrument your program, to specify what kind of data you want to collect under
what conditions.

2. Execute your instrumented program, to generate and capture the desired data.

3. Analyze the resulting data.

Accordingly, CrayPat consists of the following major components:

• pat_build, the utility used to instrument programs

• the CrayPat run time environment, which collects the specified performance data

• pat_report, the first-level analysis tool used to produce text reports or export
data for more sophisticated analysis

• pat_help, the command-line driven online help system

All CrayPat components, including the man pages and help system, are available
only when the CrayPat module is loaded.

1.1.1 Loading CrayPat and Compiling

To use CrayPat, first load your programming environment of choice, and then load
the CrayPat module.

> module load xt-craypat

For successful results, the CrayPat module must be loaded before you compile the
program to be instrumented, instrument the program, execute the instrumented
program, or generate a report. If you want to instrument a program that was compiled
before the CrayPat module was loaded, you may under some circumstances find that
re-linking it is sufficient, but as a rule it's best to load the CrayPat module and then
recompile.

When instrumenting a program, CrayPat requires that the object (.o) files created
during compilation be present, as well as the library (.a) files, if any. However,
most compilers automatically delete the .o and .a files when working with single
source files and compiling and linking in a single step, therefore it is good practice
to compile and link in separate steps and use the compiler command line option to
preserve these files. For example, if you are using the Cray Compiling Environment
(CCE) Fortran compiler, compile using either of these command line options:

> ftn -c sourcefile.f

Alternatively:

> ftn -h keepfiles sourcefile.f

10 S–2376–50

Introduction [1]

Then link the object files to create the executable program:

> ftn -o executable sourcefile.o

For more information about compiling and linking, see your compiler's
documentation.

1.1.2 Instrumenting the Program

After the CrayPat module is loaded and the program is compiled and linked, you can
instrument your program for performance analysis experiments. This is done using
the pat_build command. In simplest form, it is used like this:

> pat_build executable

This produces a copy of your original program, which is named executable+pat (for
example, a.out+pat) and instrumented for the default experiment. Your original
executable remains untouched.

The pat_build command supports a large number of options and directives,
including an API that enables you to instrument specified regions of your code.
These options and directives are documented in the pat_build(1) man page and
discussed in Chapter 2, Using pat_build on page 17.

The CrayPat API is discussed in Advanced Users: The CrayPat API on page 25.

1.1.2.1 Automatic Program Analysis

CrayPat is also capable of performing Automatic Program Analysis, and determining
which pat_build options are mostly likely to produce meaningful data from your
program. For more information about using Automatic Program Analysis, see Using
Automatic Program Analysis on page 21.

1.1.3 Running the Program and Collecting Data

Instrumented programs are executed in exactly the same way as any other program;
either by using the aprun command if your site permits interactive sessions or by
using your system's batch commands.

When working on a Cray XT system, always pay attention to your file system mount
points. While it may be possible to execute a program on a login node or while
mounted on the ufs file system, this generally does not produce meaningful data.
Instead, always run instrumented programs on compute nodes and while mounted on
a high-performance file system that supports record locking, such as the Lustre file
system.

S–2376–50 11

Using Cray Performance Analysis Tools

CrayPat supports more than fifty optional run time environment variables that enable
you to control instrumented program behavior and data collection during execution.
For example, if you use the C shell and want to collect data in detail rather than in
aggregate, consider setting the PAT_RT_SUMMARY environment variable to 0 (off)
before launching your program.

/lus/nid00008> setenv PAT_RT_SUMMARY 0

Doing so can nearly double the amount of data available in Cray Apprentice2, but at
the cost of larger data file sizes and increased overhead.

The CrayPat run time environment variables are documented in the
intro_craypat(1) man page and discussed in Chapter 3, Using the CrayPat Run
Time Environment on page 31.

1.1.4 Analyzing the Results

Assuming your instrumented program runs to completion or planned termination,
CrayPat outputs one or more data files. The exact number, location, and content of the
data file(s) will vary depending on the nature of your program, the type of experiment
for which it was instrumented, and the run time environment variable settings in
effect at the time of program execution.

All initial data files are output in .xf format, with a generated file name consisting of
your original program name, plus pat, plus the execution process ID number, plus
a code string indicating the type of data contained within the file. Depending on the
program run and the types of data collected, CrayPat output may consist of either a
single .xf data file or a directory containing multiple .xf data files.

To begin analyzing the captured data, use the pat_report command. In simplest
form, it looks like this:

/lus/nid00008> pat_report myprog+pat+PIDem-n.xf

The pat_report command accepts either a file or directory name as input and
processes the .xf file(s) to generate a text report. In addition, it also exports the
.xf data to a single .ap2 file, which is both a self-contained archive that can be
reopened later using the pat_report command and the exported-data file format
used by Cray Apprentice2.

The pat_report command provides more than thirty predefined report templates,
as well as a large variety of user-configurable options. These reports and options are
documented in the pat_report(1) man page and discussed in Chapter 4, Using
pat_report on page 41.

Note: If you are upgrading from an earlier version of CrayPat, see Upgrading from
Earlier Versions on page 14 for important information about data file compatibility.

12 S–2376–50

Introduction [1]

1.1.5 Online Help

The CrayPat man pages, online help, and FAQ are available only when the
xt-craypat module is loaded.

The CrayPat commands, options, and environment variables are documented in the
following man pages:

• intro_craypat(1) — basic usage and environment variables

• pat_build(1) — instrumenting options and API usage

• hwpc(3) — optional hardware counter groups that can be used with pat_build

• pat_report(1) — reporting and data-export options

In addition, CrayPat also includes an extensive online help system, which features
many examples and the answers to many frequently asked questions. To access the
help system, enter this command:

> pat_help

The pat_help command accepts options. For example, to jump directly into the
FAQ, enter this command:

> pat_help FAQ

Once the help system is launched, navigation is by one-key commands (e.g., / to
return to the top-level menu) and text menus. It is not necessary to enter entire
words to make a selection from a text menu; only the significant letters are required.
For example, to select "Building Applications" from the FAQ menu, it is sufficient
to enter Buil.

Help system usage is documented further in the pat_help(1) man page.

1.1.5.1 Reference Files

When the CrayPat module is loaded, the environment variable CRAYPAT_ROOT
is defined. Advanced users will find the files in $CRAYPAT_ROOT/lib and
$CRAYPAT_ROOT/include useful. The /lib directory contains the predefined
trace group definitions (see Using Predefined Trace Groups on page 18) and build
directives (see Advanced Users: Environment Variables and Build Directives on
page 22), while the /include directory contains the files used with the CrayPat API
(see Advanced Users: The CrayPat API on page 25).

S–2376–50 13

Using Cray Performance Analysis Tools

1.1.5.2 PAPI

CrayPat uses PAPI, the Performance API. This interface is normally transparent to the
user. However, if you want more information about PAPI, see the intro_papi(3)
and papi_counters(5) man pages, as well as the PAPI Programmer's Reference
and PAPI User's Guide.

Additional information is available through the PAPI website at
http://icl.cs.utk.edu/papi/.

1.1.6 Upgrading from Earlier Versions

If you are upgrading from an earlier version of CrayPat, be advised that file
compatibility is not maintained between versions. Programs instrumented using
earlier versions of CrayPat must be recompiled, relinked, and reinstrumented using
CrayPat 5.0. Likewise, .xf and .ap2 data files created using earlier versions
of CrayPat cannot be read using the release 5.0 versions of pat_report or
Cray Apprentice2, nor can data files created using release 5.0 be read using earlier
versions of pat_report or Cray Apprentice2.

If you have upgraded to release 5.0 from an earlier version of CrayPat, the earlier
version likely remains on your system in the /opt/modulefiles/xt-craypat
directory. (This may vary depending on your site's software administration and
default version policies.) To revert to the earlier version, use the module swap
command.

For example, assuming that the current default version is 5.0, to revert from CrayPat
5.0 to CrayPat 4.4 so that you can read an old .ap2 file, enter this command:

> module swap xt-craypat xt-craypat/4.4.0

To return to the current default version, reverse the command arguments:

> module swap xt-craypat/4.4.0 xt-craypat

1.2 Analyzing Data with Cray Apprentice2
Cray Apprentice2 is a separately licensed GUI tool for visualizing and manipulating
the performance analysis data captured during program execution. Cray Apprentice2
can display a wide variety of reports and graphs, depending on the type of program
being analyzed, the way in which the program was instrumented for data capture, and
the data that was collected during program execution.

Cray Apprentice2 is not a component of CrayPat, nor is it restricted to analyzing
data generated on any particular Cray system. You do not set up or run performance
analysis experiments from within Cray Apprentice2. Rather, you use CrayPat first,
to instrument your program and capture performance analysis data, and then use
Cray Apprentice2 afterwards to visualize and explore the resulting data files.

14 S–2376–50

http://icl.cs.utk.edu/papi/

Introduction [1]

The number and appearance of the reports that can be generated using
Cray Apprentice2 is determined by the kind and quantity of data captured during
program execution, which in turn is determined by the way in which the program
was instrumented and the environment variables in effect at the time of program
execution. For example, changing the PAT_RT_SUMMARY environment variable to
0 before executing the instrumented program nearly doubles the number of reports
available when analyzing the resulting data in Cray Apprentice2.

1.2.1 Loading and Launching Cray Apprentice2

To begin using Cray Apprentice2, load the apprentice2 module:

> module load apprentice2

You do not need to have the CrayPat module loaded in order to use Cray Apprentice2.

To launch the Cray Apprentice2 application, enter this command:

> app2 &

Note: Cray Apprentice2 requires that your workstation be configured to host
X Window System sessions. If the app2 command returns an "unable to open
display" error, contact your system administrator for help in configuring X Window
System hosting.

You can specify an .ap2 data file to be opened when you launch Cray Apprentice2:

> app2 my_datafile.ap2 &

Otherwise, Cray Apprentice2 opens a file selection window and you can then select
the file you want to open.

For more information about using the app2 command, see the app2(1) man page.

1.2.2 Online Help

Cray Apprentice2 release 5.0 features an online help system as well as numerous
pop-ups and tool-tips that are displayed by hovering the cursor over an area of interest
on a chart or graph. To access the online help system, click the Help button, or
right-click on any report tab and then select Panel Help from the pop-up menu.

Feel free to experiment with the Cray Apprentice2 user interface, and to left-
or right-click on any area that looks like it might be interesting. Because
Cray Apprentice2 does not write any data files, you cannot corrupt, truncate, or
otherwise damage your original .ap2 data file using Cray Apprentice2.

S–2376–50 15

Using Cray Performance Analysis Tools

1.2.3 Upgrading from Earlier Versions

If you are upgrading from an earlier version of Cray Apprentice2, be advised that
file compatibility is not maintained between versions. Data files created using
earlier versions of CrayPat cannot be opened in Cray Apprentice2 release 5.0, nor
can data files created using CrayPat release 5.0 be opened in earlier versions of
Cray Apprentice2.

If you have upgraded to release 5.0 from an earlier version of
Cray Apprentice2, the earlier version likely remains on your system in
the /opt/modulefiles/apprentice2 directory. (This may vary depending
on your site's software administration and default version policies.) To revert to the
earlier version, use the module swap command.

For example, assuming that the current default version is 5.0, to revert from
Cray Apprentice2 release 5.0 to release 4.4 so that you can read an old .ap2 file,
enter this command:

> module swap apprentice2 apprentice2/4.4.0

To return to the current default version, reverse the command arguments:

> module swap apprentice2/4.4.0 apprentice2

16 S–2376–50

Using pat_build [2]

The pat_build command is the instrumenting component of the CrayPat
performance analysis tool. After you load the xt-craypat module and recompile
your program, use the pat_build command to instrument your program for data
capture.

CrayPat supports two categories of performance analysis experiments: tracing
experiments, which count some event such as the number of times a specific system
call is executed, and asynchronous (sampling) experiments, which capture values at
specified time intervals or when a specified counter overflows.

The pat_build command is documented in more detail in the pat_build(1)
man page. For additional information and examples, see pat_help build.

2.1 Basic Profiling
The easiest way to use the pat_build command is by accepting the defaults.

> pat_build myprogram

This generates a copy of your original executable that is instrumented for the default
experiment, samp_pc_time, an experiment that samples program counters at
regular intervals and produces a basic profile of the program's behavior during
execution.

A variety of other predefined experiments are available. (See Selecting a Predefined
Experiment on page 37.) However, in order to use any of these other experiments,
you must first instrument your program for tracing.

S–2376–50 17

Using Cray Performance Analysis Tools

2.2 Using Predefined Trace Groups
The easiest way to instrument your program for tracing is by using the -g option to
specify a predefined trace group.

> pat_build -g tracegroup myprogram

These trace groups instrument the program to trace all function entry point references
belonging to the specified group. Only those function entry points actually executed
by the program at run time are traced. The valid trace group names are:

blacs Basic Linear Algebra communication subprograms

blas Basic Linear Algebra subprograms

caf Co-Array Fortran (Cray CCE compiler only)

ffio Flexible File I/O (Cray CCE compiler only)

fftw Fast Fourier Transform library

hdf5 Manages extremely large and complex data collections

heap Dynamic heap

io Includes stdio and sysio groups

lapack Linear Algebra Package

lustre Lustre File System

math ANSI math

mpi MPI

netcdf Network common data form (manages array-oriented scientific data)

omp OpenMP API

portals Lightweight message passing API

pthreads POSIX threads

scalapack Scalable LAPACK

shmem SHMEM

stdio All library functions that accept or return the FILE* construct

sysio I/O system calls

system System calls

upc Unified Parallel C (Cray CCE compiler only)

18 S–2376–50

Using pat_build [2]

The files that define the predefined trace groups are kept in $CRAYPAT_ROOT/lib.
To see exactly which functions are being traced in any given group, examine the
Trace files. These files can also be used as templates for creating user-defined tracing
files. (See Instrumenting a User-defined List of Functions on page 20.)

2.3 User-defined Tracing
Alternatively, you can use the pat_build command options to instrument specific
function entry points, to instrument a user-defined list of function entry points, to
block the instrumentation of specific functions, or to create new trace intercept
routines.

2.3.1 Enabling Tracing and the CrayPat API

To change the default experiment from sampling to tracing, activate any API calls
added to your program, and enable tracing for user-defined functions, use the -w
option.

> pat_build -w myprogram

The -w option has other implications which are discussed in the following sections.

2.3.2 Instrumenting a Single Function

To instrument a specific function by name, use the -T option.

> pat_build -T tracefunc myprogram

This option applies to all the entry points contained within the predefined function
groups that are used with the -g option. If the -w option is specified, user-defined
entry points are traced as well. (See Using Predefined Trace Groups on page 18.)

If tracefunc contains a slash (/) character, the string is interpreted as a basic regular
expression. If regular expressions identify any user-defined entry points, the -w
option must also be specified to generate trace wrappers.

2.3.3 Preventing Instrumentation of a Function

To prevent instrumentation of a specific function, use the -T ! option.

> pat_build -T !tracefunc myprogram

If tracefunc begins with an exclamation point (!) character, references to tracefunc
are not traced.

S–2376–50 19

Using Cray Performance Analysis Tools

2.3.4 Instrumenting a User-defined List of Functions

To trace a user-defined list of functions, use the -t option.

> pat_build -t tracefile myprogram

The tracefile is a plain ASCII text file listing the functions to be traced.
For an example of a tracefile, see any of the predefined Trace files in
$CRAYPAT_ROOT/lib.

To specify user-defined functions, also include the -w option.

2.3.5 Creating New Trace Intercept Routines for User Files

To create new trace intercept routines for those function entry points that are defined
in the respective source file owned by the user, use the -u option.

> pat_build -u myprogram

To prevent a specific function entry point entry-point from being traced, use the-T!
option.

> pat_build -u -T'!entry-point' myprogram

2.3.6 Creating New Trace Intercept Routines for Everything

To make tracing the default experiment, activate the CrayPat API, and create new
trace intercept routines for those function entry points for which no trace intercept
routine already exists, use the -w option.

> pat_build -w -t tracefile[...] -T symbol[...] myprogram

If -t, -T, or the trace build directive are not specified, only those function entry
points necessary to support the CrayPat run time library are traced. If -t, -T, or the
trace build directive are specified, and -w is not specified, only those function
points that have pre-existing trace intercept routines are traced.

20 S–2376–50

Using pat_build [2]

2.4 Using Automatic Program Analysis
The Automatic Program Analysis feature lets CrayPat suggest how your program
should be instrumented, in order to capture the most useful data from the most
interesting areas. To use this feature, follow these steps.

1. Instrument the original program.

$ pat_build -O apa my_program

This produces the instrumented executable my_program+pat.

2. Run the instrumented executable.

$ aprun my_program+pat

This produces the data file my_program+pat+PID-nodesdt.xf, which contains
basic asynchronously derived program profiling data.

3. Use pat_report to process the data file.

$ pat_report my_program+pat+PID-nodesdt.xf

This produces three results:

• a sampling-based text report to stdout

• an .ap2 file (my_program+pat+PID-nodesdt.ap2), which contains both
the report data and the associated mapping from addresses to functions and
source line numbers

• an .apa file (my_program+pat+PID-nodesdt.apa), which contains the
pat_build arguments recommended for further performance analysis

4. Reinstrument the program, this time using the .apa file.

$ pat_build -O my_program+pat+PID-nodesdt.apa

It is not necessary to specify the program name, as this is specified in the .apa
file. Invoking this command produces the new executable, my_program+apa,
this time instrumented for enhanced tracing analysis.

5. Run the new instrumented executable.

$ aprun my_program+apa

This produces the new data file my_program+pat+PID2-nodesdt.xf, which
contains expanded information tracing the most significant functions in the
program.

S–2376–50 21

Using Cray Performance Analysis Tools

6. Use pat_report to process the new data file.

$ pat_report my_program+pat+PID2-nodesdt.xf

This produces two results.

• a tracing report to stdout

• an .ap2 file (my_program+pat+PID2-nodesdt.ap2) containing both
the report data and the associated mapping from addresses to functions and
source line numbers

For more information about Automatic Program Analysis, see pat_help APA.

2.5 Advanced Users: Environment Variables and Build
Directives

CrayPat supports a number of environment variables and build directives that
enable you to fine-tune the behavior of the pat_build command. The following
environment variables are currently supported.

PAT_BUILD_LINK_DIR

If set, specifies the directory in which the object and archive files
can be found.

PAT_BUILD_NOCLEANUP

If set, specifies if the directory used for intermediate temporary files
is removed when pat_build terminates.

PAT_BUILD_OPTIONS

If set, specifies the pat_build options that are to be evaluated
before any options on the command line.

PAT_BUILD_TRACE_ARCHIVE

If set to nonzero, archive files writable by the user are eligible
to have their function entry points traced when the -u option is
specified. This is the default behavior. To disable this behavior, set
this environment variable to zero.

PAT_BUILD_VERBOSE

If set, specifies the detail level of the progress messages related to
the instrumentation process. This value corresponds to the number
of -v options specified.

22 S–2376–50

Using pat_build [2]

Build directives are invoked either by using the pat_build -d option to read in a
build directives file (by default, $CRAYPAT_ROOT/lib/BuildDirectives),
or by using the pat_build -D option to specify individual directives. The
following build directives are currently supported. The format of each directive is
dirname=dirvalue.

force-instr=y | n

By default, the pat_build command does not permit a program
to be instrumented if it already has been instrumented by another
method. If this directive is set to y, the pat_build command
ignores the check for prior instrumentation and attempts to force
instrumentation of the program. The other methods of instrumenting
a program include:

• the PERFCTR, PFM, or PAPI libraries

• the IOBUF or FPMPI libraries

• GNU profiling or GNU coverage analysis

• MPI profiling functions

• previous use of the pat_build command

!
Caution: Using this directive to force instrumentation of a
previously instrumented program may result in an executable that
produces incorrect results, exhibits unpredictable behavior, or
generates invalid CrayPat performance analysis data.

invalid=entry-point[, entry-point...]

Specifies one or more function entry points in the original program
that inhibit any instrumentation.

link-fatal=operand[, operand...]

Specifies one or more operands that, if present in the original link,
will prevent the instrumented link from occurring.

link-ignore=operand[, operand...]

Specifies one or more operands that, if present in the original link,
will not be passed down to the instrumented link.

link-ignore-libs=lib[, lib...]

Specifies one or more object or archive files that, if present in the
original link, will not be passed down to the instrumented link.

link-instr=operand[, operand...]

Specifies one or more operands to include in the instrumented link.

S–2376–50 23

Using Cray Performance Analysis Tools

link-objs=ofile[, ofile...]

Specifies one or more object files to include in the instrumented link.

link-options-file=y | n

By default, the link that produces the instrumented program inserts
ld operands not included in the link of the original program inline.
If set to y, this directive puts the ld operands into a file and uses
the ld @file syntax to include the options. This requires GNU
ld version 2.6.19 or later.

rtenv=name=value[,name=value,...]

Embeds the run time environment variable name in the instrumented
program and sets it to value value. If a run time environment variable
is set using both this directive and in the execution environment, the
value set in the execution environment takes precedence and this
value is ignored.

For more information about run time environment variables, see the
intro_craypat(1) man page.

trace=entry-point[, entry-point,...]

Specifies one or more function entry points in the original program
to trace. If entry-point is preceded by the ! character, function
entry-point is not allowed to be traced.

trace-args=y | n

Collect and record at run time the values of formal parameters for
generated trace intercept routines. The default is n.

trace-complex=y | n

If set to y, generate a wrapper for function entry points that return a
complex value. The default is n.

trace-debug=strng[,strng2,...]

Add verbose print statements to generated trace intercept routines.
The string strng identifies part or all of the function entry point
name. The print statements are activated at run time when the
PAT_RT_VERBOSE environment variable is set to nonzero. This
may be helpful if a traced function entry point is suspected of causing
a run time error.

24 S–2376–50

Using pat_build [2]

trace-file=strng[,strng2,...]

Activate or deactivate tracing of function entry points in a file.
The string strng identifies part or all of the file name to activate or
deactivate. If strng is preceded by an exclamation point (!) function
entry points in the matched file(s) are not traced.

trace-max=n

The maximum number of function entry points in the original
program that can be traced. The default is 1024. Tracing a large
number of entry points results in degraded performance of the
instrumented program at run time.

trace-obj-size=min,max

Specifies the minimum and maximum size in bytes of object and
archive files to trace.

trace-skip=strng[,strng2,...]

Silently ignore function entry points when processing them for
tracing. The string strng identifies part or all of the function entry
point name.

trace-text-size=min,max

Specifies the minimum and maximum size in bytes of text sections
in user-defined function entry points to trace. This does not apply to
entry points defined in the trace function groups.

varargs=y | n

If set to y, function entry points that accept variable arguments can
be traced. The default is n.

2.6 Advanced Users: The CrayPat API
There may be times when you want to focus on a certain region within your code,
either to reduce sampling overhead, reduce data file size, or because only a particular
region or function is of interest. In these cases, use the CrayPat API to insert calls
into your program source, to turn data capture on and off at key points during
program execution. By using the CrayPat API, it is possible to collect data for
specific functions upon entry into and exit from the functions, or even from one or
more regions within the body of the function.

The general procedure for using the CrayPat API looks like this.

S–2376–50 25

Using Cray Performance Analysis Tools

Procedure 1. Using CrayPat API Calls

1. Load the CrayPat module.

> module load xt-craypat

2. Include the CrayPat API header file in your source code. Header files for both
Fortran and C/C++ are provided in $CRAYPAT_ROOT/include.

3. Modify your source code to insert API calls where wanted.

4. Compile your code.

5. Use the pat_build -w option to build the instrumented executable.
Additional functions can also be specified using the -t or -T options. The -u
option (see Creating New Trace Intercept Routines for User Files on page 20)
may be used, but it is not recommended as it forces pat_build to create an
entry point for every user-defined function, which may inject excessive tracing
overhead and obscure the results for the regions.

6. Run the instrumented program, and use the pat_report command to examine
the results.

2.6.1 Header Files

CrayPat API calls are supported in both Fortran and C. The include files are found in
$CRAYPAT_ROOT/include.

The C header file, pat_api.h, must be included in your C source code.

The Fortran header files, pat_apif.h and pat_apif77.h, may be included
in your source or used for reference purposes only. The header file pat_apif.h
can be used only with compilers that accept Fortran 90 constructs such as
new-style declarations and interface blocks. The alternative Fortran header file,
pat_apif77.h, is for use with compilers that do not accept such constructs.

26 S–2376–50

Using pat_build [2]

2.6.2 API Calls

The following API calls are supported. All API usage must begin with a
PAT_region_begin call and end with a PAT_region_end call. The examples
below show C syntax. The Fortran functions are similar.

int PAT_region_begin (int id, const char *label)
int PAT_region_end (int id)

Defines the boundaries of a region. For each region, a summary
of activity including time and hardware performance counters (if
selected) is produced. The argument id assigns a numerical value to
the region and must be greater than zero. Each id must be unique
across the entire program.

The argument label assigns a character string to the region, allowing
for easier identification of the region in the report.

Two run time environment variables affect region processing:
PAT_RT_REGION_CALLSTACK and PAT_RT_REGION_MAX.
See the intro_craypat(1) man page for more information about
these environment variables.

int PAT_record (int state)
int PAT_state (int state)
int PAT_sampling_state (int state)
int PAT_tracing_state (int state)

PAT_record controls the state for all threads on the executing
PE. As a rule, use PAT_record unless there is a need for different
behaviors for sampling and tracing.

If it is necessary to use the lower-level API functions
(PAT_sampling_stateor PAT_tracing_state), these
control the state for the respective experiment for the executing
thread only. The PAT_state API function is similar to the other
lower-level API functions, but determines the active experiment
itself.

S–2376–50 27

Using Cray Performance Analysis Tools

The lower-level API functions change the state of sampling or tracing
to state, where state can have one of the following values:

PAT_STATE_ON

Activates the state.

PAT_STATE_OFF

Deactivates the state.

PAT_STATE_QUERY

Returns the current value of state without changing
it.

All other values have no effect on the state. The state at the time of
the call is returned.

int PAT_trace_user_l (const char *str, int expr, ...)

Issues a TRACE_USER record into the experiment data file if the
expression expr evaluates to true. The record contains the identifying
string str and the arguments, if specified, in addition to other
information, including a timestamp.

Returns the value of expr.

This function applies to tracing experiments only.

This function is supported for C and C++ programs only, and is not
available in Fortran.

int PAT_trace_user_v (const char *str, int expr, int nargs, long *args)

Issues a TRACE_USER record into the experiment data file if the
expression expr evaluates to true. The record contains the identifying
string str and the arguments, if specified, in addition to other
information, including a timestamp.

nargs indicates the number of 64–bit arguments pointed to by args.
These arguments are included in the TRACE_USER record.

Returns the value of expr.

This function applies to tracing experiments only.

void PAT_trace_user (const char *str)

Issues a TRACE_USER record containing the identifying string str
into the experiment data file.

This function applies to tracing experiments only.

28 S–2376–50

Using pat_build [2]

int PAT_trace_function (const void *addr, int state)

Activates or deactivates the tracing of the instrumented function
indicated by the function entry address addr. The argument state is
the same as state above. Returns nonzero if the function at the entry
address was activated or deactivated, otherwise, zero is returned.

This function applies to tracing experiments only.

int PAT_flush_buffer (void)

Writes all of the recorded contents in the data buffer to the
experiment data file for the calling PE and calling thread. The
number of bytes written to the experiment data file is returned. After
writing the contents, the data buffer is empty and starts to refill. See
intro_craypat(1) to control the size of the write buffer.

Note: The data collected by the PAT_trace_user API functions is not
currently shown on any report. Advanced users may want to collect it and extract
information from a text dump of the data files.

For more information about CrayPat API usage, see the pat_build(1) man
page. Additional information and examples are provided in the help system under
pat_help API.

2.7 Advanced Users: OpenMP
For programs that use the OpenMP programming model, CrayPat can measure
the overhead incurred by entering and leaving parallel regions and work-sharing
constructs within parallel regions, show per-thread timings and other data, and
calculate the load balance across threads for such constructs.

For programs that use both MPI and OpenMP, profiles by default compute load
balance across all threads in all ranks, but you can also see load balances for each
programming model separately. For more information about reporting load balance
by programming model, see the pat_report(1) man page.

The Cray CCE compiler automatically inserts calls to trace points in the CrayPat run
time library in order to support the required CrayPat measurements.

PGI compiler release 7.2.0 or later automatically inserts calls to trace points. For
all other compilers, including earlier releases of the PGI compiler suite, the user is
responsible for inserting API calls.

S–2376–50 29

Using Cray Performance Analysis Tools

The following C functions are used to instrument OpenMP constructs for compilers
that do not support automatic instrumentation. Fortran subroutines with the same
names are also available.

void PAT_omp_parallel_enter (void);
void PAT_omp_parallel_exit (void);
void PAT_omp_parallel_begin (void);
void PAT_omp_parallel_end (void);
void PAT_omp_loop_enter (void);
void PAT_omp_loop_exit (void);
void PAT_omp_sections_enter (void);
void PAT_omp_sections_exit (void);
void PAT_omp_section_begin (void);
void PAT_omp_section_end (void);

Note that the CrayPat OpenMP API does not support combined parallel work-sharing
constructs. To instrument such a construct, it must be split into a parallel construct
containing a work-sharing construct.

Use of the CrayPat OpenMP API function must satisfy the following requirements.

• If one member of an _enter/_exit or _begin/_end pair is called, the other
must also be called.

• Calls to _enter or _begin functions must immediately precede the relevant
construct. Calls to _end or _exit functions must immediately follow the
relevant construct.

• For a given parallel region, all or none of the four functions with prefix
PAT_omp_parallel must be called.

• For a given "sections" construct, all or none of the four functions with prefix
PAT_omp_section must be called.

• A "single" construct should be treated as if it were a "sections" construct
consisting of one section.

30 S–2376–50

Using the CrayPat Run Time Environment [3]

The CrayPat run time environment variables communicate directly with an
executing instrumented program and affect how data is collected and saved.
Detailed descriptions of all run time environment variables are provided in the
intro_craypat(1) man page. Additional information can be found in the online
help system under pat_help environment.

This chapter provides a summary of the run time environment variables, and
highlights the more commonly used ones and what they are used for.

3.1 Summary
All CrayPat run time environment variable names begin with PAT_RT_. Some
require discrete values, while others are toggles. In the case of all toggles, a value of
1 is on (enabled) and 0 is off (disabled).

Table 1. Run Time Environment Variables Summary

Variable Name Short Description Default

PAT_RT_BUILD_ENV Toggle: use run time environment
variables embedded using the
pat_build rtenv directive.

1

PAT_RT_CALLSTACK Specify the depth to which to trace
call stacks.

100

PAT_RT_CALLSTACK_BUFFER_SIZE Specify the size in bytes of the run
time summary buffer used to collect
function call stacks.

4MB

PAT_RT_CHECKPOINT Set the maximum number of
checkpoint states collected.

32

PAT_RT_COMMENT Specify string to insert into
experiment data files.

unset

PAT_RT_CONFIG_FILE Specify configuration file(s)
containing run time environment
variables.

unset

S–2376–50 31

Using Cray Performance Analysis Tools

Variable Name Short Description Default

PAT_RT_DOFORK Toggle: enable collection of run time
data in a new data file for each forked
process.

0

PAT_RT_EXIT_AFTER_INIT Toggle: terminate execution after
initialization of the CrayPat run time
library.

0

PAT_RT_EXPERIMENT Specify the performance analysis
experiment to perform.

samp_pc_time
if instrumented
asynchronously,
otherwise
trace

PAT_RT_EXPFILE_APPEND Toggle: append experiment data
records to existing experiment data
file.

0

PAT_RT_EXPFILE_DIR Specify the directory in which to
write the experiment data file.

current
execution
directory

PAT_RT_EXPFILE_FIFO Toggle: create data file as named
FIFO pipe instead of a regular file.

0

PAT_RT_EXPFILE_MAX Specify the maximum number of data
files created.

256

PAT_RT_EXPFILE_NAME Specify the base name of the
experiment data file.

base name of
instrumented
executable

PAT_RT_EXPFILE_PES Specify the individual PEs from
which to collect and record data.

all PEs

PAT_RT_EXPFILE_REPLACE Toggle: enable overwriting of existing
experiment data file(s).

0

PAT_RT_EXPFILE_SUFFIX Specify the default experiment data
filename suffix.

.xf

PAT_RT_HEAP_BUFFER_SIZE Specify the size in bytes of the
buffer used to collect dynamic heap
information.

2MB

PAT_RT_HWPC Specify the hardware performance
counter groups to be monitored.

unset

PAT_RT_HWPC_DOMAIN Specify the domain (1, 2, 4) in which
hardware performance counters are
active.

Ox1

32 S–2376–50

Using the CrayPat Run Time Environment [3]

Variable Name Short Description Default

PAT_RT_HWPC_FILE Specify file(s) containing hardware
performance counter event
specifications.

unset

PAT_RT_HWPC_FILE_GROUP Specify file(s) containing hardware
performance counter group
definitions.

unset

PAT_RT_HWPC_MPX Toggle: enable multiplexing of
hardware performance counter events.

0

PAT_RT_HWPC_OVERFLOW Specify hardware performance
counter overflow frequency and
interrupt values.

unset

PAT_RT_INTERVAL Specify the sampling interval in
microseconds.

10000

PAT_RT_INTERVAL_TIMER Specify the type of interval timer
(0–2) used for sampling-by-time
experiments.

2

PAT_RT_MEMORY_SET Specify the 64–bit pattern used to
initialize all dynamically allocated
memory used by CrayPat.

0

PAT_RT_MPI_SYNC Toggle: measure MPI load imbalance
by measuring the time spent in barrier
and sync calls before entering the
collective.

1 for tracing
experiments, 0
for sampling
experiments

PAT_RT_OFFSET Specify the offset in bytes of the
starting virtual address in the text
segment to begin sampling.

0

PAT_RT_OMP_SYNC_TRIES Specify the number of sleep intervals
performed by OpenMP slave threads
waiting for the main thread to
complete CrayPat run time library
initialization.

100 sleeps
at 100,000
microsecond
intervals

PAT_RT_OPEN_MAX Specify the maximum number of
file descriptions that can be open
simultaneously.

system
maximum

PAT_RT_RECORD_API Toggle: enable recording of data
generated by CrayPat API functions.

1

PAT_RT_RECORD_PE Deprecated: see
PAT_RT_EXPFILE_PES.

S–2376–50 33

Using Cray Performance Analysis Tools

Variable Name Short Description Default

PAT_RT_RECORD_THREAD Specify the individual threads to
collect data from.

all threads

PAT_RT_REGION_CALLSTACK Specify the maximum stack
depth for CrayPat API functions
PAT_region_begin and
PAT_region_end.

128

PAT_RT_REGION_MAX Specify the largest numerical ID
that may be used as an argument
to CrayPat API functions
PAT_region_begin and
PAT_region_end.

100

PAT_RT_SAMPLING_MODE Specify the mode (0–3) in which
trace-enhanced sampling operates.

0

PAT_RT_SAMPLING_SIGNAL Specify the signal issued when an
interval timer expires or a hardware
counter overflows.

29
(SIGPROF)

PAT_RT_SETUP_SIGNAL_HANDLERS Toggle: ignore received signals in
order to produce a more accurate
traceback.

1

PAT_RT_SIZE Specify the number of contiguous
bytes in the text segment to sample.

all bytes in
segment

PAT_RT_SUMMARY Toggle: enable run time
summarization and data aggregation.

1

PAT_RT_THREAD_MAX Specify the maximum number of
POSIX or OpenMP threads that can
be created for each process.

8

PAT_RT_TRACE_DEPTH Specify the maximum depth of the
run time callstack.

512

PAT_RT_TRACE_EA_TOLERANCE Specify the number of lowest-order
bits ignored when determining if a
function entry address is activated for
tracing.

2

PAT_RT_TRACE_FUNCTION_ARGS Specify the maximum number of
function entry point argument values
recorded each time the function is
called.

256

PAT_RT_TRACE_FUNCTION_DISPLAY Toggle: write the function entry point
names that have been instrumented to
stdout.

0

34 S–2376–50

Using the CrayPat Run Time Environment [3]

Variable Name Short Description Default

PAT_RT_TRACE_FUNCTION_LIMITS Specify instrumented function entry
points to be ignored when tracing.

unset

PAT_RT_TRACE_FUNCTION_MAX Set maximum number of traces
generated for a single process.

unlimited

PAT_RT_TRACE_HEAP Toggle: collect dynamic heap
information.

1

PAT_RT_TRACE_HOOKS Toggle: record trace data
for functions containing
compiler-generated hooks.

1

PAT_RT_TRACE_LOOPS Toggle: collect loop information
for use with compiler-guided
optimization.

1

PAT_RT_TRACE_OVERHEAD Specify the number of times calling
overhead is sampled during program
initialization and termination.

100

PAT_RT_TRACE_THRESHOLD_PCT Set relative time threshold below
which function trace records are not
kept.

unset

PAT_RT_TRACE_THRESHOLD_TIME Set absolute time threshold below
which function trace records are not
kept.

unset

PAT_RT_VALIDATE_SYSCALLS Toggle: prevent program from
executing function calls that interfere
with data collection.

1

PAT_RT_VERBOSE Toggle: show CrayPat run time
activity messages.

0

PAT_RT_WRITE_BUFFER_SIZE Size of single thread data collection
buffer in bytes.

8MB

3.2 Common Uses

3.2.1 Controlling Run Time Summarization

Variable: PAT_RT_SUMMARY

Run time summarization is enabled by default. When it is enabled, data is captured in
detail, but automatically aggregated and summarized before being saved. This greatly
reduces the size of the resulting experiment data files but at the cost of fine-grain
detail. Specifically, when running tracing experiments, the formal parameter values,
function return values, and call stack information are not saved.

S–2376–50 35

Using Cray Performance Analysis Tools

If you want to study your data in detail, and particularly if you want to use
Cray Apprentice2 to generate charts and graphs, disable run time summarization by
setting PAT_RT_SUMMARY to 0. Doing so can more than double the number of
reports available in Cray Apprentice2.

3.2.2 Controlling Data File Size

Depending on the nature of your experiment and the duration of the program run, the
data files generated by CrayPat can be quite large. To reduce the files to manageable
sizes, considering adjusting the following run time environment variables.

For sampling experiments, try these:

PAT_RT_CALLSTACK

PAT_RT_EXPFILE_PES

PAT_RT_HWPC

PAT_RT_HWPC_OVERFLOW

PAT_RT_INTERVAL

PAT_RT_SUMMARY

PAT_RT_SIZE

For tracing experiments, try these:

PAT_RT_CALLSTACK

PAT_RT_EXPFILE_PES

PAT_RT_HWPC

PAT_RT_RECORD_THREAD

PAT_RT_SUMMARY

PAT_RT_TRACE_FUNCTION_ARGS

PAT_RT_TRACE_FUCNTION_LIMITS

PAT_RT_TRACE_FUNCTION_MAX

PAT_RT_TRACE_THRESHOLD_PCT

PAT_RT_TRACE_THRESHOLD_TIME

36 S–2376–50

Using the CrayPat Run Time Environment [3]

3.2.3 Selecting a Predefined Experiment

Variable: PAT_RT_EXPERIMENT

By default, CrayPat instruments programs for a program-counter sampling
experiment, samp_pc_time, which samples program counters by time and
produces a generalized profile of program behavior during execution. However, if
any function entry points are instrumented for tracing by using the pat_build
-g, -u, -t, -T, -O, or -w options, then the program is instrumented for a tracing
experiment, which traces calls to the specified function entry point(s).

After your program is instrumented using pat_build, use the
PAT_RT_EXPERIMENT environment variable to further specify the type of
experiment to be performed.

Note: Samples generated from sampling by time experiments apply to the process
as a whole, and not to individual threads. Samples generated from sampling by
overflow experiments apply to individual threads.

The valid experiment types are:

samp_pc_time

The default sampling experiment samples the program counters
at regular intervals and records the total program time and the
absolute and relative times each program counter was recorded.
The default sampling interval is 10,000 microseconds by user
and system CPU time intervals, but this can be changed using
the PAT_RT_INTERVAL and PAT_RT_INTERVAL_TIMER
environment variables. Optionally, this experiment also records the
values of the hardware performance counters specified using the
PAT_RT_HWPC environment variable.

samp_pc_ovfl

This experiment samples the program counters at the overflow
of a specified hardware performance counter. The counter and
overflow value are specified using the PAT_RT_HWPC_OVERFLOW
environment variable. Optionally, this experiment also records the
values of the hardware performance counters specified using the
PAT_RT_HWPC environment variable. The default overflow counter
is cycles and the default overflow frequency equates to an interval
of 1,000 microseconds.

samp_cs_time

This experiment is similar to the samp_pc_time experiment, but
samples the call stack at the specified interval and returns the total
program time and the absolute and relative times each call stack
counter was recorded.

S–2376–50 37

Using Cray Performance Analysis Tools

samp_cs_ovfl

This experiment is similar to the samp_pc_ovfl experiment but
samples the call stack.

samp_ru_time

This experiment is similar to the samp_pc_time experiment but
samples system resources.

samp_ru_ovfl

This experiment is similar to the samp_pc_ovfl experiment but
samples system resources.

samp_heap_time

This experiment is similar to the samp_pc_time experiment but
samples dynamic heap memory management statistics.

samp_heap_ovfl

This experiment is similar to the samp_pc_time experiment but
samples dynamic heap memory management statistics.

trace Tracing experiments trace the function entry points that were
specified using the pat_build -g, -u, -t, -T, -O, or -w options
and record entry into and exit from the specified functions. Only
true function calls can be traced; function calls that are inlined by
the compiler or that have local scope in a compilation unit cannot be
traced. The behavior of tracing experiments is also affected by the
PAT_RT_TRACE_DEPTH, PAT_RT_TRACE_EA_TOLERANCE,
PAT_RT_TRACE_FUNCTION_ARGS,
PAT_RT_TRACE_FUNCTION_DISPLAY, and
PAT_RT_TRACE_FUNCTION_LIMITS environment variables, all
of which are described in more detail in the intro_craypat(1)
man page.

Note: If a program is instrumented for tracing and then you use
PAT_RT_EXPERIMENT to specify a sampling experiment, trace-enhanced
sampling is performed.

3.2.3.1 Trace-enhanced Sampling

Environment variable: PAT_RT_SAMPLING_MODE

If you use pat_build to instrument a program for a tracing experiment and then
use PAT_RT_EXPERIMENT to specify a sampling experiment, trace-enhanced
sampling is enabled and affects both user-defined functions and predefined function
groups.

38 S–2376–50

Using the CrayPat Run Time Environment [3]

Trace-enhanced sampling is affected by the PAT_RT_SAMPLING_MODE
environment variable. This variable can have one of the following values:

0 Ignore trace-enhanced sampling. Perform a normal tracing
experiment. (Default)

1 Enable raw sampling. Any traced entry points present in the
instrumented program are ignored.

2 Enable focused sampling. Only traced entry points and the functions
they call are sampled.

3 Enable bubble sampling. Traced entry points and any functions they
call return a sample program counter address mapped to the trace
entry point.

Trace-enhanced sampling is also affected by the PAT_RT_SAMPLING_SIGNAL
environment variable. This variable can be used to specify the signal that is issued
when an interval timer expires or a hardware counter overflows. The default value
is 29 (SIGPROF).

3.2.4 Measuring MPI Load Imbalance

Environment variable: PAT_RT_MPI_SYNC

In MPI programs, time spent waiting at a barrier before entering a collective can be
a significant indication of load imbalance. The PAT_RT_MPI_SYNC environment
variable, if set, causes the trace wrapper for each collective subroutine to measure
the time spent waiting at the barrier call before entering the collective. This time is
reported by pat_report in the function group MPI_SYNC, which is separate from
the MPI function group, which shows the time actually spent in the collective.

This environment variable affects tracing experiments only and is set on by default.

3.2.5 Monitoring Hardware Counters

Environment variable: PAT_RT_HWPC

Use this environment variable to specify hardware counters to be monitored while
performing tracing experiments. The easiest way to use this feature is by specifying
the ID number of one of the predefined hardware counter groups; these groups and
their meanings vary depending on your system's processor architecture and are
defined in the hwpc(3) man page.

More adventurous users may want to load the PAPI module and then use this
environment variable to specify one or more hardware counters by PAPI name. To
load the PAPI module, enter this command:

> module load xt-papi

S–2376–50 39

Using Cray Performance Analysis Tools

Then use the papi_avail and papi_native_avail commands to explore the
list of counters available on your system. For more information about using PAPI,
see the intro_papi(3), papi_avail(1), and papi_native_avail(1) man
pages.

The behavior of the PAT_RT_HWPC environment variable is also
affected by the PAT_RT_HWPC_DOMAIN, PAT_RT_HWPC_FILE,
PAT_RT_HWPC_FILE_GROUP, and PAT_RT_HWPC_OVERFLOW environment
variables. All of these are described in detail in the intro_craypat(1) man page.

40 S–2376–50

Using pat_report [4]

The pat_report command is the reporting component of the CrayPat performance
analysis tool. After you use the pat_build command to instrument your program,
set the run time environment variables as desired, and then execute your program, use
the pat_report command to generate text reports from the resulting data and
export the data for use in other applications.

The pat_report command is documented in detail in the pat_report(1)
man page. Additional information can be found in the online help system under
pat_help report.

4.1 Using Data Files
The data files generated by CrayPat vary depending on the type of program being
analyzed, the type of experiment for which the program was instrumented, and the
run time environment variables in effect at the time the program was executed. In
general, the successful execution of an instrumented program produces one or more
.xf files, which contain the data captured during program execution.

Unless specified otherwise using run time environment variables, these file names
have the format a.out+pat+PID-NIDe[m].xf, where:

a.out The name of the instrumented executable.

PID The process ID assigned to the instrumented executable at run time.

NID The physical node ID upon which the rank zero process was
executed.

e The type of experiment performed, either s for sampling or t for
tracing.

m An optional code indicating other special characteristics of the
program that produced the data file. These can be:

d The data was generated by a distributed memory
process such as MPI, SHMEM, UPC, or CAF.

f The data was generated by a forked process.

o The data was generated by OpenMP.

t The data was generated by POSIX threads.

S–2376–50 41

Using Cray Performance Analysis Tools

Use the pat_report command to process the information in individual .xf files
or directories containing .xf files. Upon execution, pat_report automatically
generates an .ap2 file, which is both a self-contained archive that can be reopened
later using the pat_report command and the exported-data file format used by
Cray Apprentice2.

Note: If the executable was instrumented with the pat_build -O apa option,
running pat_report on the .xf file(s) also produces an .apa file, which is the
file used by Automatic Program Analysis. See Using Automatic Program Analysis
on page 21.

4.2 Producing Reports
To generate a report, use the pat_report command to process your .xf file or
directory containing .xf files.

> pat_report a.out+pat+PIDe[m]-n.xf

The complete syntax of the pat_report command is documented in the
pat_report(1) man page.

Note: Running pat_report automatically generates an .ap2 file, which is
both a self-contained archive that can be reopened later using the pat_report
command and the exported-data file format used by Cray Apprentice2. Also, if the
executable was instrumented with the pat_build -O apa option, running
pat_report on the .xf file(s) produces an .apa file, which is the file used by
Automatic Program Analysis. See Using Automatic Program Analysis on page 21.

The pat_report command is a powerful report generator with a wide range
of user-configurable options. However, the reports that can be generated are first
and foremost dependent on the kind and quantity of data captured during program
execution. For example, if a report does not seem to show the level of detail you are
seeking when viewed in Cray Apprentice2, consider re-running your program with
PAT_RT_SUMMARY set to zero (disabled).

4.2.1 Using Predefined Reports

The easiest way to use pat_report is by using the -O to specify one of the
predefined reports. For example, enter this command to see a top-down view of the
calltree.

> pat_report -O calltree datafile.xf

The predefined reports currently available are:

profile Show data by function name only.

callers (or ca)

Show function callers (bottom-up view).

42 S–2376–50

Using pat_report [4]

calltree (or ct)

Show calltree (top-down view).

ca+src Show line numbers in callers.

ct+src Show line numbers in calltree.

heap Implies heap_program. heap_hiwater, and heap_leaks.
Instrumented programs must be built using the pat_build -g
heap option in order to show heap_hiwater and heap_leaks
information.

heap_program

Compare heap usage at the start and end of the program, showing
heap space used and free at the start, and unfreed space and
fragmentation at the end.

heap_hiwater

If the pat_build -g heap option was used to instrument the
program, this report option shows the heap usage "high water" mark,
the total number of allocations and frees, and the number and total
size of objects allocated but not freed between the start and end of
the program.

heap_leaks If the pat_build -g heap option was used to instrument the
program, this report option shows the largest unfreed objects by call
site of allocation and PE number.

load_balance

Implies load_balance_program, load_balance_group,
and load_balance_function. Show PEs with maximum,
minimum, and median times.

load_balance_program
load_balance_group
load_balance_function

For the whole program, groups, or functions, respectively, show the
imb_time (difference between maximum and average time across
PEs) in seconds and the imb_time% (imb_time/max_time *
NumPEs/(NumPEs - 1)). For example, an imbalance of 100%
for a function means that only one PE spent time in that function.

load_balance_cm

If the pat_build -g mpi option was used to instrument the
program, this report option shows the load balance by group with
collective-message statistics.

S–2376–50 43

Using Cray Performance Analysis Tools

load_balance_sm

If the pat_build -g mpi option was used to instrument the
program, this report option shows the load balance by group with
sent-message statistics.

loops If the compiler -h profile_generate option was used
when compiling and linking the program, display loop count and
optimization guidance information.

mpi_callers

Show MPI sent- and collective-message statistics.

mpi_sm_callers

Show MPI sent-message statistics.

mpi_coll_callers

Show MPI collective-message statistics.

mpi_dest_bytes

Show MPI bin statistics as total bytes.

mpi_dest_counts

Show MPI bin statistics as counts of messages.

mpi_sm_rank_order

Uses sent message data from tracing MPI functions to generate
suggested MPI rank order information. Requires the program to be
instrumented using the pat_build -g mpi option.

mpi_rank_order

Uses time in user functions, or alternatively, any other metric
specified by using the -s mro_metric options, to generate
suggested MPI rank order information.

profile_pe.th

Show the imbalance over the set of all threads in the program.

profile_pe_th

Show the imbalance over PEs of maximum thread times.

profile_th_pe

For each thread, show the imbalance over PEs.

44 S–2376–50

Using pat_report [4]

program_time

Shows which PEs took the maximum, median, and minimum time for
the whole program.

read_stats
write_stats

If the pat_build -g io option was used to instrument the
program, these options show the I/O statistics by filename and by PE,
with maximum, median, and minimum I/O times.

samp_profile+src

Show sampled data by line number with each function.

thread_times

For each thread number, show the average of all PE times and the
PEs with the minimum, maximum, and median times.

Note: By default, all reports show either no individual PE values or only the PEs
having the maximum, median, and minimum values. The suffix _all can be
appended to any of the above options to show the data for all PEs. For example,
the option load_balance_all shows the load balance statistics for all PEs
involved in program execution. Use this option with caution, as it can yield very
large reports.

4.2.2 User-defined Reports

In addition to the -O predefined report options, the pat_report command supports
a wide variety of user-configurable options that enable you to create and generate
customized reports. These options are described in detail in the pat_report(1)
man page and examples are provided in the pat_help online help system.

If you want to create customized reports, pay particular attention to the -s, -d, and
-b options.

-s These options define the presentation and appearance of the report,
ranging from layout and labels, to formatting details, to setting
thresholds that determine whether some data is considered significant
enough to be worth displaying.

-d These options determine which data appears on the report. The range
of data items that can be included also depends on how the program
was instrumented, and can include counters, traces, time calculations,
mflop counts, heap, I/O, and MPI data. As well, these options enable
you to determine how the values that are displayed are calculated.

-b These options determine how data is aggregated and labeled in the
report summary.

S–2376–50 45

Using Cray Performance Analysis Tools

For more information, see the pat_report(1) man page. Additional information
and examples can be found in the pat_help online help system.

4.3 Exporting Data
When you use the pat_report command to view an .xf file or a directory
containing .xf files, pat_report automatically generates an .ap2 file, which is
a self-contained archive file that can be reopened later using either pat_report
or Cray Apprentice2. No further work is required in order to export data for use in
Cray Apprentice2.

Note: Data file compatibility is not maintained between versions. If you are
upgrading from an earlier version, .ap2 files created with earlier versions cannot
be used with release 5.0, nor can files created with release 5.0 be viewed with
earlier versions. For more information, see Upgrading from Earlier Versions on
page 14.

The pat_report -f option also enables you to export data to ASCII text or
XML-format files. When used in this manner, pat_report functions as a
data export tool. The entire data file is converted to the target format, and the
pat_report filtering and formatting options are ignored.

4.4 Automatic Program Analysis
If your executable was instrumented using the pat_build -O apa option,
running pat_report on the .xf data file also produces an .apa file containing
the recommended parameters for reinstrumenting the program for more detailed
performance analysis. For more information about Automatic Program Analysis, see
Using Automatic Program Analysis on page 21.

46 S–2376–50

Using Cray Apprentice2 [5]

Cray Apprentice2 is an interactive X Window System tool for visualizing and
manipulating performance analysis data captured during program execution.

The number and appearance of the reports that can be generated using
Cray Apprentice2 is determined solely by the kind and quantity of data captured
during program execution. For example, changing the PAT_RT_SUMMARY
environment variable to 0 (zero) before executing the instrumented program nearly
doubles the number of reports available when analyzing the resulting data in
Cray Apprentice2.

5.1 Launching the Program
To begin using Cray Apprentice2, load the apprentice2 module. If this module is
not part of your default work environment, enter the following command to load it:

> module load apprentice2

Note: You do not need to have the CrayPat module loaded in order to use
Cray Apprentice2.

To launch the Cray Apprentice2 application, enter this command:

> app2 &

Alternatively, you can specify the filename to open on launch:

> app2 myfile.ap2 &

Note: Cray Apprentice2 requires that your workstation be configured to host
X Window System sessions. If the app2 command returns an "unable to open
display" error, see your system administrator for information about configuring X
Window System hosting.

The app2 command supports two options: --limit and --limit_per_pe.
These options enable you to restrict the amount of data being read in from the data
file. Both options recognize the K, M, and G abbreviations for kilo, mega, and giga; for
example, to open an .ap2 data file and limit Cray Apprentice2 to reading in the first
3 million data items, enter this command:

> app2 --limit 3M data_file.ap2 & &

S–2376–50 47

Using Cray Performance Analysis Tools

The --limit option sets a global limit on data size. The --limit_per_pe
sets the limit on a per processing element basis. Depending on the nature of the
program being examined and the internal structure of the data file being analyzed, the
--limit_per_pe is generally preferable, as it preserves data parallelism.

For more information about the app2 command, see the app2(1) man page.

5.2 Opening Data Files
If you specified a valid data file or directory on the app2 command line, the file or
directory is opened and the data is read in, parsed, and displayed.

If you did not specify a data file or directory on the command line, the File Selection
Window is displayed.

Figure 1. File Selection

Note: As with all other screens in Cray Apprentice2, the exact appearance of the
File Selection window varies depending on which version of the Gimp Tool Kit
(GTK) is installed on your X Windows System workstation.

After you select a data file, the data is read in. When Cray Apprentice2 finishes
parsing the data, the Overview is displayed.

48 S–2376–50

Using Cray Apprentice2 [5]

5.3 Basic Navigation
Cray Apprentice2 displays a wide variety of reports, depending on the program being
studied, the type of experiment performed, and the data captured during program
execution. While the number and content of reports varies, all reports share the
following general navigation features.

Figure 2. Screen Navigation

Table 2. Cray Apprentice2 Navigation Functions

Callout Description

1 The File menu enables you to open data files or directories,
capture the current screen display to a .jpg file, or exit from
Cray Apprentice2.

2 The Data tab shows the name of the data file currently
displayed. You can have multiple data files open simultaneously
for side-by-side comparisons of data from different program
runs. Click a data tab to bring a data set to the foreground.
Right-click the tab for additional options.

S–2376–50 49

Using Cray Performance Analysis Tools

Callout Description

3 The Report toolbar show the reports that can be displayed for
the data currently selected. Hover the cursor over an individual
report icon to display the report name. To view a report, click
the icon.

4 The Report tabs show the reports that have been displayed thus
far for the data currently selected. Click a tab to bring a report
to the foreground. Right-click a tab for additional report-specific
options.

5 The main display varies depending on the report selected and
can be resized to suit your needs. However, most reports feature
pop-up tips that appear when you allow the cursor to hover
over an item, and active data elements that display additional
information in response to left or right clicks.

6 On many reports, the total duration of the experiment is shown
as a graduated bar at the bottom of the report window. Move
the caliper points left or right to restrict or expand the span of
time represented by the report. This is a global setting for each
data file: moving the caliper points in one report affects all other
reports based on the same data, unless those other reports have
been detached or frozen.

All report tabs feature right-click menus, which display both common options
and additional report-specific options. The common right-click menu options are
described in Table 3. Report-specific options are described in Viewing Reports on
page 51.

Table 3. Common Panel Actions

Option Description

Screendump Capture the report or graphic image currently displayed
and save it to a .jpg file.

Detach Panel Display the report in a new window.

Remove Panel Close the window and remove the report tab from the
main display.

Freeze Panel Freeze the report as shown. Subsequent changes to the
caliper points do not change the appearance of the frozen
report.

Panel Help Display report-specific help, if available.

50 S–2376–50

Using Cray Apprentice2 [5]

5.4 Viewing Reports
The reports Cray Apprentice2 produces vary depending on the types of performance
analysis experiments conducted and the data captured during program execution. The
report icons indicate which reports are available for the data file currently selected.
Not all reports are available for all data.

The following sections describe the individual reports.

5.4.1 Overview Report

The Overview Report is the default report. Whenever you open a data file, this is
the first report displayed.

When the Overview Report is displayed, look for:

• In the pie chart on the left, the calls and functions in the program, sorted by the
number of times the calls or functions were invoked and expressed as a percentage
of the total call volume.

• In the pie chart on the right, the calls and functions in the program, sorted by
the amount of time spent performing the calls or functions and expressed as a
percentage of the total program execution time.

• Hover the cursor over any section of a pie chart to display a pop-up window
containing specific detail about that call or function.

• Right-click the Report Tab to display a pop-up menu that lets you show or
hide compute time. Hiding compute time is useful if you want to focus on the
communications aspects of the program.

• Alternately, click the Toggle to view this report as a bar graph.

The Overview report is a good general indicator of how much time your program
is spending performing which activities and a good place to start looking for load
imbalance.

To explore this further, click the function of interest to display a Load Balance Report
for the function.

The Load Balance Report shows:

• The load balance information for the function you selected on the Overview
Report. This report can be sorted by either PE, Calls, or Time. Click a column
heading to sort the report by the values in the selected column.

• The minimum, maximum, and average times spent in this function, as well as
standard deviation.

• Hover the cursor over any bar to display PE-specific quantitative detail.

S–2376–50 51

Using Cray Performance Analysis Tools

Together, the Overview and Load Balance reports provide a good first look at the
behavior of the program during execution and can help you identify opportunities for
improving code performance. Look for functions that take a disproportionate amount
of total execution time and for PEs that spend considerably more time in a function
than other PEs do in the same function. This may indicate a coding error, or it may be
the result of a data-based load imbalance.

To further examine load balancing issues, examine the Mosaic and Delta View
reports (if available), and look for any communication "hotspots" that involve the PEs
identified on the Load Balance Report.

5.4.2 Environment Reports

The Environment Reports provide general information about the conditions under
which the data file currently being examined was created. As a rule, this information
is useful only when trying to determine whether changes in system configuration have
affected program performance.

The Environment Reports consists of four panes. The Env Vars pane lists the values
of the system environmental variables that were set at the time the program was
executed.

Note: This does not include the pat_build or CrayPat environment variables
that were set at the time of program execution.

The System Info pane lists information about the operating system.

The Resource Limits pane lists the system resource limits that were in effect at the
time the program was executed.

The Heap Info pane lists heap usage information.

There are no active data elements or right-click menu options in any of the
Environment Reports.

52 S–2376–50

Using Cray Apprentice2 [5]

5.4.3 Traffic Report

The Traffic Report shows internal PE-to-PE traffic over time. The information on this
report is broken out by communication type (read, write, barrier, and so on). While
this report is displayed, you can:

• Hover over an item to display quantitative information.

• Zoom in and out, either by using the zoom buttons or by drawing a box around
the area of interest.

• Right-click an area of interest to open a pop-up menu, which enables you to hide
the origin or destination of the call or go to the callsite in the source code, if the
source file is available.

• Right-click the report tab to access alternate zoom in and out controls, or to filter
the communications shown on the report by the duration of the messages.

Filtering messages by duration is useful if you're only interested in a particular
group of messages. For example, to see only the messages that take the most
time, move the filter caliper points to define the range you want, and then click
the Apply button.

The Traffic Report is often quite dense, and typically requires zooming in to reveal
meaningful data. Look for large blocks of barriers that are being held up by a single
PE. This may indicate that the single PE is waiting for a transfer, or it can also
indicate that the rest of the PEs are waiting for that PE to finish a computational piece
before continuing.

5.4.4 Mosaic Report

The Mosaic Report depicts the matrix of communications between source and
destination PEs, using colored blocks to represent the relative communication times
between PEs. By default, this report is based on average communication times.
Right-click on the report tab to display a pop-up menu that gives you the choice of
basing this report on the Total Calls, Total Time, Average Time, or Maximum Time.

The graph is color-coded. Light green blocks indicates good values, while dark red
blocks may indicate problem areas. Hover the cursor over any block to show the
actual values associated with that block.

Use the diagonal scrolling buttons in the lower right corner to scroll through the
report and look for red "hot spots." These are generally an indication of bad data
locality and may represent an opportunity to improve performance by better memory
or cache management.

S–2376–50 53

Using Cray Performance Analysis Tools

5.4.5 Activity Report

The Activity Report shows communication activity over time, bucketed by logical
function such as synchronization. Compute time is not shown.

Look for high levels of usage from one of the function groups, either over the entire
duration of the program or during a short span of time that affects other parts of the
code. You can use the calipers to filter out the startup and close-out time, or to narrow
the data being studied down to a single iteration.

5.4.6 Function Report

The Function Report is a table showing the time spent by function, as both a wall
clock time and percentage of total run time. This report also shows the number of
calls to the function, the number of call sites in the code that call the function, the
extent to which the call is imbalanced, and the potential savings that would result
if the function were perfectly balanced.

This is an active report. Click on any column heading to sort the report by that
column, in ascending or descending order. In addition, if a source file is listed for a
given function, you can click on the function name and open the source file at the
point of the call.

Look for routines with high usage, a small number of call sites, and the largest
imbalance and potential savings, as these are the often the best places to focus your
optimization efforts.

5.4.7 Call Graph

The Call Graph shows the calling structure of the program as it ran and charts the
relationship between callers and callees in the program. This report is a good way to
get a sense of what is calling what in your program, and how much relative time is
being spent where.

Each call site is a separate node on the chart. The relative horizontal size of a node
indicates the cumulative time spent in the node's children. The relative vertical size of
a node indicates the amount of time being spent performing the computation function
in that particular node.

Nodes that contain only callers are green in color.

By default, routines that do not lead to the top routines are hidden.

Nodes that contain callees and represent significant computation time also include
stacked bar graphs, which present load-balancing information. The yellow bar in the
background shows the maximum time, the purple bar on the left shows the average
time, and the cyan (light blue) bar on the right shows the minimum time spent in
the function. The larger the yellow area visible within a node, the greater the load
imbalance.

54 S–2376–50

Using Cray Apprentice2 [5]

While the Call Graph report is displayed, you can:

• Hover the cursor over any node to further display quantitative data for that node.

• Double-click on leaf node to display a Load Balance report for that callsite.

• Right-click the report tab to display a pop-up menu. The options on this menu
enable you to change this report so that it shows all times as percentages or
actual times, or highlights imbalance percentages and the potential savings from
correcting load imbalances. This menu also enables you to filter the report by
time, so that only the nodes representing large amounts of time are displayed, or
to unhide everything that has been hidden by other options and restore the default
display.

• Right-click any node to display another pop-up menu. The options on this menu
enable you to hide this node, use this node as the base node (thus hiding all other
nodes except this node and its children), jump to this node's caller, or go to the
source code, if available.

• Use the zoom control in the lower right corner to change the scale of the graph.
This can be useful when you are trying to visualize the overall structure.

• Use the Search control in the lower center to search for a particular node by
function name.

• Use the >> toggle in the lower left corner to show or hide an index that lists
the functions on the graph by name. When the index is displayed, you can
double-click a function name in the index to find that function in the Call Graph.

5.4.8 I/O Reports

The I/O reports are available only if I/O traffic information has been captured. In
general, these reports are useful for identifying I/O bottlenecks and conflicts.

There are two I/O reports:

• I/O Overview

• I/O Rates

5.4.8.1 I/O Overview Report

The I/O Overview Report is similar to the Load Balance Report, but shows I/O
operations and cumulative times by file descriptor. Like the Load Balance Report, it
can help you identify opportunities to improve performance by correcting imbalances
in the distribution of I/O work.

This report can be sorted by clicking on the column headings.

S–2376–50 55

Using Cray Performance Analysis Tools

5.4.8.2 I/O Rates

The I/O Rates Report is a table listing quantitative information about the program's
I/O usage. The report can be sorted by any column, in either ascending or descending
order. Click on a column heading to change the way that the report is sorted.

Look for I/O activities that have low average rates and high data volumes. This may
be an indicator that the file should be moved to a different file system.

5.4.9 Hardware Reports

The Hardware reports are available only if hardware counter information has been
captured. There are two Hardware reports:

• Hardware Counters Overview

• Hardware Counters Plot

5.4.9.1 Hardware Counters Overview Report

The Hardware Counters Overview Report is a bar graph showing hardware counter
activity by call and function, for both actual and derived PAPI metrics. While this
report is displayed, you can:

• Hover the cursor over a call or function to display quantitative detail.

• Click the "arrowhead" toggles to show or hide more information.

5.4.9.2 Hardware Counters Plot

The Hardware Counters Plot displays hardware counter activity over time and
resembles an EKG trace or a seismographic chart. Use this report to look for
correlations between different kinds of activity. This report is most useful when you
are more interested in knowing when a change in activity happens, rather than in the
precise quantity of the change.

Look for slopes, trends, and drastic changes across multiple counters. For example, a
sudden decrease in floating point operations, accompanied by a sudden increase in L1
cache activity, may indicate a problem with caching or data locality. To zero-in on
problem areas, use the calipers to narrow the focus to time-spans of interest on this
graph, and then look at other reports to learn what is happening at these times.

To display the value of a specific data point, along with the maximum value, hover the
cursor over the area of interest on the chart.

56 S–2376–50

Glossary

blade

1) A field-replaceable physical entity. A Cray XT service blade consists of AMD
Opteron sockets, memory, Cray SeaStar chips, PCI-X or PCIe cards, and a blade
control processor. A Cray XT compute blade consists of AMD Opteron sockets,
memory, Cray SeaStar chips, and a blade control processor. A Cray X2 compute
blade consists of eight Cray X2 chips (CPU and network access links), two voltage
regulator modules (VRM) per CPU, 32 memory daughter cards, a blade controller for
supervision, and a back panel connector. 2) From a system management perspective,
a logical grouping of nodes and blade control processor that monitors the nodes on
that blade.

Catamount

The operating system kernel developed by Sandia National Laboratories and
implemented to run on Cray XT single-core compute nodes. See also Catamount
Virtual Node (CVN); compute node.

Catamount Virtual Node (CVN)

The Catamount kernel enhanced to run on dual-core Cray XT compute nodes.

CLE

The operating system for Cray XT systems.

compute node

A node that runs application programs. A compute node performs only computation;
system services cannot run on compute nodes. Compute nodes run a specified kernel
to support either scalar or vector applications. See also node; service node.

login node

The service node that provides a user interface and services for compiling and
running applications.

S–2376–50 57

Using Cray Performance Analysis Tools

module

See blade.

node

For CLE systems, the logical group of processor(s), memory, and network
components acting as a network end point on the system interconnection network.

node ID

A decimal number used to reference each individual node. The node ID (NID) can be
mapped to a physical location.

processing element

A processing element is one instance of an executable propagated by the Application
Level Placement Scheduler (ALPS).

service node

A node that performs support functions for applications and system services. Service
nodes run SUSE LINUX and perform specialized functions. There are six types of
predefined service nodes: login, IO, network, boot, database, and syslog.

58 S–2376–50

	Using Cray Performance Analysis Tools
	New Features
	Introduction [1]
	1.1 Analyzing Program Performance with CrayPat
	1.1.1 Loading CrayPat and Compiling
	1.1.2 Instrumenting the Program
	1.1.2.1 Automatic Program Analysis

	1.1.3 Running the Program and Collecting Data
	1.1.4 Analyzing the Results
	1.1.5 Online Help
	1.1.5.1 Reference Files
	1.1.5.2 PAPI

	1.1.6 Upgrading from Earlier Versions

	1.2 Analyzing Data with Cray Apprentice2
	1.2.1 Loading and Launching Cray Apprentice2
	1.2.2 Online Help
	1.2.3 Upgrading from Earlier Versions

	Using pat_build [2]
	2.1 Basic Profiling
	2.2 Using Predefined Trace Groups
	2.3 User-defined Tracing
	2.3.1 Enabling Tracing and the CrayPat API
	2.3.2 Instrumenting a Single Function
	2.3.3 Preventing Instrumentation of a Function
	2.3.4 Instrumenting a User-defined List of Functions
	2.3.5 Creating New Trace Intercept Routines for User Files
	2.3.6 Creating New Trace Intercept Routines for Everything

	2.4 Using Automatic Program Analysis
	2.5 Advanced Users: Environment Variables and Build Directives
	2.6 Advanced Users: The CrayPat API
	2.6.1 Header Files
	2.6.2 API Calls

	2.7 Advanced Users: OpenMP

	Using the CrayPat Run Time Environment [3]
	3.1 Summary
	3.2 Common Uses
	3.2.1 Controlling Run Time Summarization
	3.2.2 Controlling Data File Size
	3.2.3 Selecting a Predefined Experiment
	3.2.3.1 Trace-enhanced Sampling

	3.2.4 Measuring MPI Load Imbalance
	3.2.5 Monitoring Hardware Counters

	Using pat_report [4]
	4.1 Using Data Files
	4.2 Producing Reports
	4.2.1 Using Predefined Reports
	4.2.2 User-defined Reports

	4.3 Exporting Data
	4.4 Automatic Program Analysis

	Using Cray Apprentice2 [5]
	5.1 Launching the Program
	5.2 Opening Data Files
	5.3 Basic Navigation
	5.4 Viewing Reports
	5.4.1 Overview Report
	5.4.2 Environment Reports
	5.4.3 Traffic Report
	5.4.4 Mosaic Report
	5.4.5 Activity Report
	5.4.6 Function Report
	5.4.7 Call Graph
	5.4.8 I/O Reports
	5.4.8.1 I/O Overview Report
	5.4.8.2 I/O Rates

	5.4.9 Hardware Reports
	5.4.9.1 Hardware Counters Overview Report
	5.4.9.2 Hardware Counters Plot

	Glossary
	List of Procedures
	Procedure 1. Using CrayPat API Calls

	List of Figures
	Figure 1. File Selection
	Figure 2. Screen Navigation

	List of Tables
	Table 1. Run Time Environment Variables Summary
	Table 2. Cray Apprentice2 Navigation Functions
	Table 3. Common Panel Actions

